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Thermopower of a single-electron transistor in the regime of strong inelastic cotunneling
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We study Coulomb blockade oscillations of thermoelectric coefficients of a single-electron transistor based
on a quantum dot strongly coupled to one of the leads by a quantum point contact. At temperatures below the
charging energ¥ the transport of electrons is dominated by strong inelastic cotunneling. In this regime we
find analytic expressions for the thermopower as a function of temperatame the reflection amplitudein
the contact. In the case when the electron spins are polarized by a strong external magnetic field, the ther-
mopower shows sinusoidal oscillations as a function of the gate voltage with the amplitude of the order of
e Yr|(T/E). We obtain qualitatively different results in the absence of the magnetic field. At temperatures
between Ec and E¢|r|? the thermopower oscillations are sinusoidal with the amplitude of order
e r|?In(E./T). On the other hand, &t<E|r|? we find nonsinusoidal oscillations of the thermopower with
the amplitude~e ™ |r| yT/EcIn(Ec/T).
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[. INTRODUCTION 1), and exhibit characteristic Coulomb blockade oscillations.
Most of the studies of thermoelectric effects in the Coulomb
It is well known that electric current in solids can be blockade regime concentrated on the thermopower
caused not only by an applied electric field but also by a
temperature gradient. This gives rise to a number of interest- \4
ing thermoelectric phenomend.It is important to note that S=- AT ' @
thermoelectric phenomena in metals require an asymmetry 1=0
between electrons and holes. Indeed, in a perfectly electrorHere V is the voltage induced across the device in the ab-
hole-symmetric system the temperature gradient will causeence of a net electric current when the temperatures of the
currents of electrons and holes equal in magnitude, whiclwo leads differ byA T, Fig. 1(a). The Peltier coefficientl is
result in a zero net electric current. related to the thermopowe® by an Onsager relationl
Many recent studies of thermoelectric effects focused on=ST.
mesoscopic systenis™ Thermoelectric properties of these  The theory of the Coulomb blockade oscillations in the
systems are particularly interesting because the electron-hotaermopower of single-electron transistors in the weak tun-
asymmetry in mesoscopic devices is usually strong and caneling regime was developed in Ref. 7. This theory takes into
be controlled experimentally by tuning external parameter&iccount only the lowest order tunneling processes, i.e., the
such as the gate voltage or magnetic field. sequential tunneling, and neglects the cotunneling processes.
Of the various thermoelectric phenomena the Peltier efits results were in agreement with the experiments of Ref. 8.
fect is probably the most important for technological appli-Later® it became possible to experimentally access the re-
cations: when an electric currehis passed through a system gime of lower temperatures and stronger coupling to the
in the absence of the temperature gradient, it is accompanigdads, where the cotunneling processes become dominant. A
by the heat current theoretical description of this regime was recently given in
Ref. 11.
lo=1III. (1) In experiments with GaAs heterostructures the quantum
dot is connected to the leads by quantum point contacts.
Herell is the Peltier coefficient. The use of the Peltier effectEach contact is usually in the regime when only one trans-
has been proposed for refrigeration in conditions when variverse mode can propagate through it, and the transmission
ous technological constraints, such as the size of the devicepefficient for this mode can be controlled experimentally.
outweigh the power efficiency considerations. The strong enRecently® Coulomb blockade oscillations in the ther-
hancement of the particle-hole asymmetry in mesoscopic danopower of a SET, with the quantum dot strongly coupled to
vices and their small size make them very promising candione of the leads, were studied for various values of the re-
dates for microrefrigeratofs. flection coefficient|r|? in this contact. The setup of these
In the last few years many experimental and theoreticaéxperiments is schematically shown in Figb)l In the re-
studied ! focused on the thermoelectric properties ofgime of strong coupling|r|?><1, nearly sinusoidal oscilla-
single-electron transisto(SET’s). Thermoelectric effects in tions of the thermopower as a function of the gate voltdge
these systems can be controlled by the gate voltggé=ig. ~ were observed.
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II. QUALITATIVE DISCUSSION OF THE THERMOPOWER
AT WEAK INELASTIC COTUNNELING

(a)

The physical meaning of the thermopower can be deduced
from the Onsager relatioB=11/T. One can easily see from
Eq. (1) that the Peltier coefficient is determined by the aver-
age energy e) of the electrons carrying current through the
system, measured from the chemical potentibi: —(€)/e.

Thus the thermopower measures the average energy of the
tunneling electrons in units of the temperature:

(b) S=— te) ()

Vg eT’
Heree is the absolute value of the electron charge. The av-
erage energy of the charge carri¢es is determined by a
T+AT - ™ T particular mechanism of transport through the system.

A conventional SET, schematically shown in Figal
consists of a quantum dot weakly coupled to two leads. The
transport of electrons from the left lead to the right one is
achieved by either sequential tunneling or cotunne(&lgs-
tic or inelastig.

The sequential tunneling refers to the lowest-order tunnel-

FIG. 1. (8) Setup of the thermopower measurement in a singleNd ProCEsses in which one ele_ctron tunnels into or out of the
electron transistor. A quantum dot is capacitively coupled to thedOt: As @ result of each tunneling event the charge of the dot
gate and connected to the two leads by tunneling junctions. Théhanges byte. When an electron tunnels into or out of the
electrons in the left and right leads are maintained at temperaturédot, the electrostatic energy of the system increases,bgr
T+AT andT, respectively, and the voltagé across the device is U_, respectively. The values af, andu_ are of the order
measured. The thermopowEqg. (2)] is measured as a function of of the charging energfE.=e?/2C, whereC is the capaci-
the gate voltagev,. (b) A SET with a quantum dot strongly tance of the dot; their values can be tuned by adjusting the
coupled to the right lead by a single-channel quantum point contacgate voltage/,. The electron that tunnels into the dot has to
The crossx in the constriction represents the backscattering in thehave the energy~u_ in order to charge the dot, so the
contact resulting in a finite reflection coefficient?. tunneling is exponentially suppressed at low temperatures as

e U+'T_ Similarly the rate of tunneling out of the dot is sup-

The theories of thermopower for the weak tunneling re-pressed as™"-'T. The thermopower of a SET in the regime
gime developed in Refs. 7 and 11 rely upon the perturbatiowf sequential tunneling was studied in Ref. 7.
theory in the strength of coupling between the quantum dot The cotunneling mechanism accounts for the coherent
and the leads. This perturbative approach fails when the cowsecond-order tunneling processes in which at the first step an
pling to the leads is strong. Previous theoretical work orelectron tunnels from, say, the left lead into the dot, and at
Coulomb blockade systems with strongly coupled quantunthe second step this or another electféor elastic and in-
dots> > was devoted to the studies of their thermodynamicelastic cotunneling, respectivelunnels from the dot to the
properties and conductance. These properties are not sengght lead. Since as a result of cotunneling processes the
tive to the electron-hole asymmetry, and a calculation of theeharge of the dot remains unchanged, the electrons partici-
thermoelectric properties requires a nontrivial generalizatiorpating in the transport through the dot do not need to have
of the approach of Refs. 14 and 15. large energies-u.., and the transport is not suppressed ex-

In this paper we develop a theory of the thermopower in gponentially at low temperatures. It is important to note that
SET with a quantum dot strongly coupled to one of the leadshe elastic cotunneling involves elastic propagation of elec-
[Fig. 1(b)]. We consider a relatively large quantum dot in trons between the tunneling contacts in the dot. The resulting
which the quantum level spacing is small, and the electrorcontribution to the transport is inversely proportional to the
transport is dominated by inelastic cotunneling. In Sec. Il wevolume of the dot. Thus in relatively large dots the finite-
present a qualitative discussion of thermoelectric transport itemperature transport is dominated by inelastic cotunneling
a SET. Some interesting symmetry properties of the deperprocesses.
dence of the thermopower on the gate voltage are discussed In order to find the cotunneling thermopower of a SET,
in Sec. lll. Our main results for the thermopower of a SET inone needs to evaluate the average enéeyyof the electron
the regime of strong inelastic cotunneling are presented itransferred through the device. Inelastic cotunneling involves
Sec. IV. We consider both the simpler case of spin-polarize@lectrons within the energy strip of widthT near the Fermi
electrons and the more interesting spin-degenerate case. Wavel. The probabilityw(e) of the second-order tunneling
discuss the results and compare them with experiments iprocess is inversely proportional to the square of the energy
Sec. V. of the virtual state,

©
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2
1 1 Gr
W(e) + , (4) S=G- ®
U,+e'—€ u_+e—¢
where we assumed that the electron with enesgyinnels Before we start the calculation let us establish useful sym-

into a state of energy’ in the dot. The energiesande’ are  metry properties of the kinetic coefficier@BandGy. These

of the order ofT and small compared to the charging ener-properties apply to the SET described by a Hamiltonian of

giesu. . One can therefore expand E@) in small (¢  the form H®+E<(N—N)2 Here H® is the part of the

—€')lu.: Hamiltonian that includes the electron energies in the leads
and the dot, as well as the transport of electrons through the

G contacts. The second term in the Hamiltonian describes the

charging energy of the dot that depends on the opefatofr

the total charge in the dot and the dimensionless gate voltage
N. We will assume that the terid(®) possesses electron-hole
symmetry. On the other hand, the charging energy term is
invariant with respect to the electron-hole transformation ac-
companied by the change of sign of the gate voltage:

1 1)\2
_+_
u, u_

1+2

W(e)ox
(e) u, u.

1 1
L,

The e-dependent correction in E¢) shows that the tun-
neling probability increases or decreases with the eneify
the tunneling particle depending on the sign uﬁf—ujl).
Since the typical energy~ T, the relative magnitude of the
term breaking the electron-hole symmetry in E&§) is N

NT(_U+1_.ufl)' aznd 7t§1e average energy of the tnneling  These properties of the Hamiltonian enable one to estab-
particles is(e)~T*(u,"—u_"). Then using Eq(3) we es-  |ish the symmetry relations for the dependence of the kinetic
timate the thermopower of a SET as coefficientsG andG+ on the gate voltaghl. As N is changed
T/ 1 1 to —N, the form of the Hamiltonian is preserved if the elec-
S=)—| —— . (6)  trons are simultaneously converted to holes. Since the signs
elu-  uy of both bias voltage/ and the current are changed to the
Here\ is a numerical coefficient of order unity; its valne ~ OPPOSIte, the conductand=4l/éV remains unchanged.
= 472/5 was found in Ref. 11. This leads to the natural concll_Js@"(N)zG(— N). On the
An interesting feature of result6) is that the ther- other hand, the temperature different& does not depend

mopower does not depend on the strength of coupling of th&N the charge of the current carriers, i.e., the kinetic coeffi-
dot to the leads. This feature is expected to persist as long &€nt Gr=7I/dAT changes sign. Thus we conclude that
the transmission coefficients of the barriers are small. HowST(N)=—Gr(—N). Thermopowe®) is also an odd func-
ever, as the barrier approaches the regime of perfect tranfon of the gate voltageS(N) = —S(—N).

mission, the Coulomb blockade oscillations of physical These symmetry properties are only exact as long as the
quantities are expected to disappBaf One should there- term H® possesses electron-hole symmetry. The Hamilto-
fore expect that in the regime of strong coupling the therians used in the derivation of our main results for the ther-

mopower will depend on the reflection coefficign? of the ~ Mopower in Sec. IV do satisfy this condition. In experimen-
contact. tal setups this condition is usually satisfied only

It is also worth mentioning that the thermopowsr ~approximately. On the other hand, the asymmetryH6?
~e IT/E¢ in a SET is much greater than the typical value develops at the energy scales of the orde_r of the Fermi en-
S~e T/Eg of the thermopower in metals; hekg: is the ~ €r9y EF>Ec. Thgrefore, the abpve-mentmned symmetry
Fermi energy. This is a consequence of the fact that th@roperties are valid up to corrections smallbg/Er .
charging effects in the dot enhance the electron-hole asym-
metry. We will show in Sec. IV that such a behavior of the  IV. THERMOPOWER IN THE REGIME OF STRONG
thermopower al — 0 persists in the strong-coupling regime. INELASTIC COTUNNELING

In this section we calculate the thermopoWEg. (8)] of
lll. KINETIC COEFFICIENTS a SET in which one of the contacts is in the strong tunneling

In this paper we restrict ourselves to the linear responsédime[Fig. 1(b)]. The conductanc& of a SET in the re-
regime When both the temperature difference between thg|me Of Strong |ne|aSt|C Cotunne“ng was fOUnd n Ref 14.
|eadsAT and the Vo|tage/ across the device are Sma”_ The Hence in the fO”OWing we concentrate on the Ca|Cu|ati0n Of
thermopower Eqg. (2)] is defined in terms of the voltagé  the thermoelectric coefficier®+ .
induced by the temperature differentd@ at zero current. In
practice, however, it is easier to calculate the current re- A. Tunneling approximation

sponse At low temperatures the energy exchange between the

| =GV+GAT. @ electron and phonon subsystems is weak. In the following
we neglect the phonons, and the temperafurefers to the
Here G is the conductance of the SET, a4 is the ther-  electrons only® We further assume that the conductance of
moelectric coefficient describing the current response to athe tunneling junction connecting the dot to the left lead is
applied temperature difference. Thermopow®r can then small compared to that of the other junctid®, <Gg. In
be expressed as this regime the dot is in the thermal equilibrium with the
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right lead, and the entire temperature ddop, which can be G, =2me’y VO<|tkp|2>- (12)
maintained, e.g., by heating the electrons on the left side of

the barrier with an external curretftpoccurs at the left con- Using Egs.(12) and(11) we can now expresS=I1/AT as
tact.

In the weak tunneling limit one can model the SET by the G, = ev(e)
HamiltonianH=H_+H', whereH, describes the left con- Gr=—— J de. (13
tact, AT7ero = oo =

2T
HLZEK eagagt >, fpagaerkE (tkpalapﬂifpa;ak), Equation(13) reduces our problem to the calculation of
P P

) the energy-dependent tunneling density of states). We
note that unlike the conductan& of the SET, the thermo-

andH’ accounts for the electron transport through the rightelectric coefficientGy is determined by the od€n energy
junction as well as the electron-electron interactions in thecomponent of density of states(e). Therefore, the ther-
system. Herey, anda, are the electron annihilation opera- mopower measurements represent an independent test of the
tors in the left lead and in the dot, respectivedy;ande, are  theory of Coulomb blockade in nearly open dots developed
the energies of the corresponding states; and the matrix elé? Refs. 13-15.
ments t,, describe the weak tunneling of the electrons It is well known that the tunneling density of states can be

through the barrier. expressed in terms of the electron Green’s function. A spe-
We will account for the tunneling through the left barrier cific form of this relation that will be convenient for further
in the lowest(second order of the perturbation theory tq,, . calculations is

Let us denote the tunneling density of states in the left lead

by v,(€) and that in the dot by(e€). To the lowest order in 1 e (= 1 .

the tunneling matrix element the current through the tunnel- v(e)= WCOShz_T _wg 2T titjexpietdt.  (14)
ing contact can be obtained with the aid of the Fermi golden

rule: Here G(7)=—(T,4.(7) 4] (0)) is the Matsubara Green’s

function; ¢, is the annihilation operator of an electron in the
* dot at the position of the left contact. For the derivation of
__ 2 _
|=—2me(|tel >f,wy'(e)v(€)[n'(e) n(e)lde. Eq.(14), see Appendix A. Substituting E¢L4) into Eq.(13),
(10) we express the thermoelectric coeffici&y in terms of the

o ) Green'’s function:
Heren|(e) andn(e) denote the Fermi distribution functions

at the temperature of the left leath-AT and the dotT,

respectively. The square of the tunneling matrix element in =

Eq. (10) is averaged over the states near the Fermi level. 2evg
To determineG; we assume that the chemical potentials

in the Fermi functions in Eq(10) are the same and expand This expression is insensitive to the specific form of the in-
the current to first order AT teractions in the quantum dot and its coupling to the right

lead. In the following sections we calculate the Green'’s func-
tion G(7) in the strong inelastic cotunneling approximation,
de. (1) and find the corresponding value Gf; .

1
ﬁ+|t)dt. (15

i7TG|_f°° sinh(7Tt) .
foocosﬁ(th)y

AT (= ev(e)

| = _2’7TEV|<|tkp|2>_2
4T4) -
cosif

ZT) B. Inelastic cotunneling approximation
Here we have replaced the density of states in the left contact At finite temperature in a sufficiently large dot one can
v|(e) by its valuer, at the Fermi energy using its weak use the approximation of inelastic cotunneling which ne-
energy dependence. The corrections to this approximatioglects the possibility of elastic propagation of electrons be-
are small in the ratio of the temperature to the Fermi energytween the two contacts in the dot. In this case the system can
We will see below that the density of states in the dot has thé&e modeled by the Hamiltonian
energy dependence at the much smaller energy adle to
the electron-electron interactions. H=H +Hg+H¢, (16)

In order to express the thermoelectric coeffici&it in
terms of physically measurable quantities, we use(E@.to  in which the Hamiltonian$i, andHg describe the indepen-
calculate the conductan€_ of the left barrier assuming that dent subsystems of electrons propagating through the left
the electrons in the dot are noninteracting. This conductancand right contacts; in particulgrH, ,Hg]=0. We have dis-
can, in principle, be measured experimentally by openingussed the form ofl, in Sec. IV A[see Eq(9)]. For weak
completely the constriction connecting the dot to the rightinelastic cotunnelingdg would have a form similar to Eq.
lead. The result is expressed in terms of the density of statg). In the case of strong inelastic cotunneling the Hamil-
in the dot vy, which is no longer renormalized by the tonian Hg has a completely different form which will be
electron-electron interactions: discussed in Secs. IV C and IV D. Finally, the tekhg de-
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scribes the Coulomb interactions in the dot. At low energies In this paper we consider the case of a single-channel
the interactions are adequately accounted for by the chargingpntact, which is usually realized in semiconductor devices.

energy approximation Depending on the presence of a magnetic field polarizing the
o spins of the electrons, one has to consider the cases of either
Hc=Ec(n +ng—N)2. (17)  spinless or spif- electrons.

Heren, andng are the operators of the number of electrons
that entered the dot through the left and right contacts, re-

spectively, andN is a dimensionless parameter which is pro- e start with the simpler case of spinless electrons. Fol-
portional to the gate voltagi, . lowing Refs. 13 and 14 we describe the electron transport

through the right quantum point contact by a model of one-
dimensional fermions. In the case of strong coupling of the
- i dot to the right lead, the charging enefd@q. (18)] gives rise
the form[ ¢ ,n ]= ¢y . For the convenience of the follow- {4 hontrivial Coulomb correlations of the motion of electrons
ing calculations we will rewrite charging energy7) in the  hraugh the constriction. It is more convenient to treat the
form problems of interacting one-dimensional electrons in the
A n ) bosonized representation. Then the Hamiltohlahof the
Hc=Ec(n+ng—N)%, (18 right constriction takes the forg=H®+HZ, where

C. Spinless electrons

By definition of the operatoﬁ,_ its commutation relations
with the fermion operato), defined below Eq(14) have

wheren is an integer-valued operator that commutes with ve (=
Y. In order to preserve the commutatioq relations between HEO)ZZ_FJ {WZHZ(X)-F[&'X(ﬁ(X)]Z}dX, (233
Y. andHc we replacey, — ¢ F, whereF is the operator, T~
lowering n by unity: [F,n]=F. It is important to note that 5
the substitutiony, — i F does not affect the form of the r_

e RSO . : Hi=—— 2 . 2
HamiltonianH, , and the only modification in the discussion R 7T|r|coi ¢(0)] (230
of Sec. IV A is in the definition of the Green’s function in

Eq. (14): Here ¢ andlIl are bosonic fields satisfying the commutation
relations[ ¢(x),I1(y)]=id(x—y), the parametev is the
G(7)=—(T, . (NF(DFT0) ! (0)). (19 Fermi velocity of the electrong, is the reflection amplitude
in the constriction, and is the bandwidth. The regions
The operatorsyy, and z,//[ now commute withHg+Hc, <0 andx>0 in the integral of Eq(233 represent the elec-
whereas andFT commute withH, . Consequently, Green’s trons in the dot and in the right lead, respectively. The de-
function (19) factorizes as viation of the density of one-dimensional electrons from its
ground-state value is given b ¢(x)/#. Thus the number
G(1)= (T (D ()T, F()FT(0)). of electrons that have entered the dot through the right con-

striction isng= ¢(0)/#, and the charging enerd¥q. (18)]

In this representation the operatafs and ¢, describe non- takes the form

interacting fermions, whose Green’s function is well known.

We can then rewrit&/(7) as 1 2
He=Ec n+—¢>(0)—N} . (230
vom T ™
9(1)=— z——==K(7), (20) o .
sin(mTr) The advantage of the bosonization approach is that Coulomb
: interaction term(23¢) is quadratic in the bosonic operatgr
K(m)=(T,F(71)F'(0)). (21)  and, therefore, can be treated exactly. On the other hand, the

o ) backscattering of electrons in the constriction in the

Substituting Eq(20) into Eq. (15), we express the ther- pogonized representation takes a strongly nonlinear form
moelectric coefficienGt of the dot in terms of the correlator [Eq. (23D)]. As a result the backscattering can only be ac-
K(7): counted for perturbatively, using the small paraméter 1.

We will calculate the time-ordered correlat&i(r) de-
fined by Eq.(21) as an imaginary-time functional integral
over the bosonic fields. The operatorrT(0) increases
from 0 to 1 at timet=0, whereas=(7) changes it back to
Unlike Eq. (15), formula (22) assumes that the transport n=0 at timet=r. Therefore,F(0)F'(0) in the functional
through the dot is due to the inelastic cotunneling mechajntegral can be omitted provided that the operdtdn the
nism, and that the electron-electron interactions in the systefction is replaced by
are completely described by the charging endiggy. (18)].

On the other hand, the couplirtdyr of the dot to the right n,(t)=6(t)6(7—1). (24)
lead is still arbitrary. In particular, Eq22) is valid in the

case of a metallic grain coupled to the lead by a wide contadtlere (t) is the unit step function. Upon this procedure the
supporting many channels. correlatorK(7) is expressed as

K !
E'f‘lt

B i 2 GLwa sinh(7Tt)
T 2 e ) xcosh(wTt)

dt. (22
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Z(7) Due to the form[Eqg. (270] of the perturbationS’ the
K(T)Zm, (25 evaluation ofK(7) in Eq. (29) again amounts to taking
Gaussian functional integrals. The straightforward but
whereZ(7) is the functional integral given by lengthy calculations carried out in Appendix B give the result
Z(r)=f exd —So—Sc(7) =S 1Dop(x,t).  (26) K(7)=Ko(7)| 1—2y€|r|cog2mN)
Here Sy denotes the part of the Eucledian action derived T
from Hamiltonian(23g of free electrons moving through the +4m2Ey|r| E—sin(27-rN)cot( aTr)|. (31
constriction in the absence of both interactions and back- ¢
scattering: Hereé~1.59 is a constant defined by E@®11). The substi-

tution of this result into Eq(22) gives the following result

B U a 2 . . . . . . .
So:f dtf dxi{( t(f) fo2. a for the thermoelectric coefficient in the first order|in:
0
’F 877G [ T\3
Here 3= 1/T. The termSc(7) is the part of the action which Gr=- 15ye | Eq [r|sin(2aN). (32)
is due to charging energ{23c), where the operaton is
replaced with Eq(24): The thermoelectric coefficier@ given by Eq.(32) is an
5 odd function of the gate voltagl, in agreement with the
Se(7)= BE n (t)+£¢(0t)—N dt 27b symmetry properties of the kinetic coefficients discussed in
A= Jo = A T AL ' Sec. Ill. More formally, in the context of the present calcu-

_ _ o _ lation the symmetryG+(N)= —G¢(—N) can be obtained as
Finally, S' is the small contribution to the action due to follows. One can see from the form of functional integral

backscattering23b): (26) and action(27) that correlator(25) has the following
D property: K(B8—7,N)=K(7,1—N). Furthermore, all the

r—_ | "2 physical properties of the system are periodidinvith pe-

S fo ﬂ_lrlcos{Zd)(O,t)]dt. @279 riod 1. This can be shown by shifting— ¢+ 7N which

removesN from S¢(7) and changes the cosine in E§70
The following calculations are performed in the regime ofto co$2¢(0,t) +27N]. The action then becomes invariant
low temperaturesT<E. . At r=0 functional integral26) is  with respect to the shifN—N+ 1. Consequently correlator

Gaussian, and its explicit evaluation gives (25) has the propertk(B8— 7,N)=K(7,—N). One can eas-
ily see from Eq.(22) that only the part oK(7) which is odd
Ko(7) (WZT 2 1 29 with respect tor— B— 7 contributes to the thermoelectric
N=|—| ———; i i i i
0 YEc/ sirB(#T7) coefficient Gy. Using the aforementioned properties of

K(7,N), this odd part can be presented as

see Appendix B. Herey=e®, where C~0.577 is Euler’s L
constant. One can easily see that the substitution of ZB).
into expression(22) results inG;=0. Kogq(7)= 5[K(7.N)=K(5=7.N)]

The vanishing of the thermoelectric coefficient in the ab-
sence of backscattering is a consequence of the fact that at
r=0 the physical properties of the system do not depend on
the gate voltagé®'’ in particular, Gy(N)=const. Taking _ o
into account thaG(N) = —G(—N) (see Sec. I), we ob- 'I_'herefore, the thermoelectric coefficie@t is an odd func-
tain G;=0. The backscattering restores the sensitivity to theion of N. _ o
gate voltag®'” and gives rise to a nonvanishing ther- The conductancé} can be pbtamed by SL_Jbst|t_ut|on of
mopower of the device. correlator (31) analytically continued to real time into Eg.

To account for the small backscattering|gt<1 we ex- (92 Of Ref. 14. The resuit has the form

pand the action in Eq$25) and(26) to first order inS’ and
find

:%[K(T,N)—K(T,—N)]. (33

27472
G:GL@[:L—Z’)/HHCO&Z’]TN)]. (34)
' / Y
K(7)=Ko(7)(1=(8"),+(5")o). (29 ¢
o . This expression is in agreement with form@hs27) of Ref.
Here(S"). is defined as 14, where the numerical prefactor in the brackets was not

determined, and with the expressi(@¥) of Ref. 18, where

f S'ex — Sy—Sc(7) D¢ the constant was found.
(8'),= (30) Substituting Eq.(32) into Eq. (8) and using the leading
7 term in Eq.(34) for the conductance, we obtain the following
j exf = So—Sc(7)]D¢ expression for the thermopower in the spinless case:
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Am3EyT n(t); therefore the integrals over the spin degrees of free-
= ek, |r|sin(27N). (35  dom in the numerator and denominator of E25) cancel.
One can easily see that acti®B8a and(38b) of the charge
It is instructive to compare this result with thermopower mode is identical to that of the spinless proble{2gg and
(6) in the regime of weak inelastic cotunneling. Both expres-270) upon the substitutiorEc—2E¢, n(t)—n(t)/\2,
sions vanish linearly at—0, but unlike Eq.(6), our result and N—N/\2. Making the respective modifications to the
(35) depends on the transmission coefficient of the barrierderivation ofKy(7) in Appendix B, we find
As expected, at perfect transmissior~0 the Coulomb
blockade oscillations of the thermopower disappeatr. w?T 1

Kel?)= 3 ES [sin(7T7)|"

(39

D. Electrons with spin
Substituting the analytic continuation of this result to

Although the spins of electrons can be polarized in an_ N_ 1/2T+it into Eq.(22), we findG;=0. As it was explained
experiment by applying a strong magnetic field, the MOs{, gec. IV C, this is a consequence of the fact that the system
common situation is when no field is applied. In this reg'mepossesses electron-hole symmetry a0
one has to consider the case of sémﬂectrons._ The rest of this section is organized as follows. In Sec.

In the presence Of _electron spins the Hamlltonﬁaaa)_— tJV D1 we calculate the thermopower within the second-
(239 has to be modified to account for the two species ofyer perturbation theory in the reflection amplitudene
electrons: spirf- and spin. Each of the spin subsystems g, that the perturbative result diverges at low tempera-
can be bosonized independently, and the Hamiltonian tak€ges \we then find the thermopower at arbitrarily low tem-

3
the form? peratures in Sec. IV D 2 using a nonperturbative approach.

0
HO =

f {7721‘[ (X)+[(9X¢U(X)]Z}dx 1. Perturbation theory
(363 At nonvanishing backscattering the correctionkg( )
appears in second order in Indeed, the first-order correc-

D tion can be expressed in the form of EQ9). It is easy to
Hg=— —|r[{cog2¢:(0)]+cog2¢ (0)]}, (36b  check that unlike the case of spinless electrons, the average
m (8") vanishes, because the fluctuations of the spin mode

1 2 ¢<(0t) are not suppressed at low frequencies by the charg-
ﬁ+_[¢T(0)+ ¢ (0)]-N; . (360  ing energy termMEq. (38b)]. Expanding Eqs(25) and(37) to
™ second order im, we find

27Tow

He=Ec

To find the thermoelectric coefficiefEq. (22)] one has to
find the correlatorK (7). Similarly to the case of spinless
electronsK(7) can be expressed in terms of the imaginary-
time functional integralEq. (25)], where

1
K(N=Ke(n)| 1+ 5((8"%), (5| (40

Similarly to Eq.(30), the averaging- - - ), here is performed
B ) with the actionSy+ Sc(7) given by Egs.(38a and (38b).
Z(T)_f exf —So— Sc(7) = S'1D¢Dds. (37 ysing the explicit form Eq. (389] of S, we obtain

Here we have introduced the charge and spin fields

¢c,s(xat) :[(ﬁT(X,t) * (ﬁl(x,t)]/ \/E The action in Eq(37) is <8’2>T=
expressed in terms of these variables as

4D?r|?

fﬁfﬁxc(t,t';T)Ks(t,t’)dt dt’, (41
0Jo

td> )2 where we have introduced the correlators

+(xda) 1

- Kke(t,t';7)=(cog \2¢,(01)Jcog 2 ¢.(01")1),
(383 (42

2
nT(t)+\/—f¢c(0,t)—N} ., (38b) Ks(t,t) =(cog V2¢5(0)]cog V2h5(01')])o. (42b)

s 3 [laf i
a=C,S
B
0
The spin fluctuations are completely decoupled from charg-

) B 2D ing action(38b), rendering the correlatat, independent of
§'=- Jo dt7|r|cos{\/§¢0(0,t)]cos{ V2640)]. 7. The calculation of the correlators, and « reduces to
(380) evaluation of Gaussian integrals. In Appendix C we find

Similar to the case of spinless electrons, in the absence of
backscattering in the constriction the calculatiorkdfr) re-
duces to evaluation of a Gaussian functional inte§Ea.
(37)]. Clearly, atr =0 the integral ovekps is unaffected by +e IO x:] (43

ke(tt': T)—_E Ree?™e —ilxA)+xAt")]
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1

t,t —_——— 44
=3B fsiaT—t)]]’ 49
where we have introduced the notations
XA)=mn(t)+ox(1), (459
“ sif 27 T(t— 7)n]—sin 27 Ttn]

Sx(1)=2, . (45D

n=1 EC

n+ —

T

In Eq. (43) we have assumeld—t'|>E.*; we will see that
this region gives the leading contribution to integd).

As discussed in Sec. IV C, only the odd M part [Eq.
(33)] of the correlatoK (7) contributes to thermoelectric co-
efficient (22). Keeping only the odd part of Eq43), from
Eq. (40) in the second order in we find

2vE~T
Koad 7)=Ke(7) |r|2sin27N)Z(7),  (46)
cosy,(t")

IL7)= JdtszT(t)J’ o [ T(t—t]

In evaluating the integral(7) one should keep in mind that
the denominator in Eq(47) is written for |t—t'|>Ec?.
Thus the logarithmic divergence &tt’ should be cut off at
[t—t'|~Ect.

To evaluate the integral(7) we first notice that away
from the points=0,r, 8 the correctionsy,(t) in Eq. (45) is
small inT/E¢;

!

(47)

2

7T
5)(,.('[)2E{CO{WT('[—T)]—COI[WT':]}. (48
C
One can neglect this correction in the argument of the cosin
in Eq. (47) and replace cog,(t')=sgnt’— 7). Then the in-
tegral overt’ can be evaluated with logarithmic accuracy:

7 2 fﬁd ) | Tt
(7)_ﬁ . tsiny (t)| — ntanT
Ec #T|t—7]
+sgr(t—7-)ln nT .
To leading order in T/E; one can replace sit)
=0x.(t)sgnt — 7). Using approximatiori48) we then obtain,
with logarithmic accuracy,
8y, ., Ec 7T
Koad 7)== Kc(7) = [r[*sin(27N)In—In tan——.
- T 2

(49
Substituting this result foK(7) into Eg. (22), we find

In—|r|23|n(27rN) (50)

PHYSICAL REVIEW B 66, 045301 (2002

The second-order perturbation theory result for the ther-
mopower can be found from Ed8) using the resultG
=G (7°T/8yEc) of Ref. 14 for the conductance of the de-
vice atr=0:

B 64y 1

= oe In—|r|zsm(277N) (51)

This result applies aT<E¢ and, similarly to the spinless
case[Eq. (35)], the thermopower vanishes it 0. It is im-
portant to note that unlike the spinless c@ke. (35)], the
thermopowerEq. (51)] diverges atT—0. This means, in
particular, that the perturbation theory leading to Esfl)

fails at sufficiently low temperatures. In Sec. IV D 2 we per-
form a nonperturbative calculation and establish the true be-
havior of the thermopower &—0.1®

2. Nonperturbative treatment

The logarithmic growth of the thermopowgEqg. (51)] at
low temperature indicates that the thermoelectric properties
of the system are controlled by spin and charge fluctuations
at frequencies belovEc. In this section we construct a
theory that describes the low-energy properties of the system
exactly, and enables us to obtain a nonperturbative expres-
sion for the thermopower at arbitrarily low temperatures.
This derivation was outlined in Ref. 19.

As we already discussed, it 0 the contributions of the
spin fluctuations to the functional integrals in the numerator
and the denominator of E@25) cancel each other, and the
ratio of the functional integrals over the charge degrees of
freedom is equal to the correlatir.(7) [Eq. (39)]. The ef-
fect of small but finiter on the charge modes is negligible,
because their fluctuations at low energies are suppressed by
the charging energy. However, even a small backscattering
pins the fluctuations of the spin modes and changes their
low-frequency dynamics dramaticalty.Therefore, one can
account for the small backscattering by presenting correlator
©5) in the form

Zs( 7)
Z40)’

K(7)=K(1Ks(7), Ky(7)= (52)
where Z,(7) is the functional integral over the slow spin
modes, averaged over the fast charge modes.

The calculation ofZ4(7) amounts to integrating out the
fast charge degrees of freedom in functional inted8).
Since the spin and charge fluctuations are only coupled by
backscattering terni38¢), this procedure reduces to the av-
eraging of cosy2¢.(0t)] with the Gaussian actiors,
+Sc(7). Indeed, one can rewrite Eq&l2g and (43) as

(co$ V2¢,(0)1c0§ 12 ¢(01")]),= Y A1) Y (1),

(53
2vE
Y ()= \/ =25 Scogx, ()~ mN].

One can see from Eq53) that at|t—t'|>Ec! correlator
(429 factorizes into the product of the averages of the co-

(54)
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sines, and thatcog v2¢¢(01)1),=Y (t). It is clear that the tion of trace(58) nontrivial. It is clear from Eq(45b) that at
higher-point correlators will also factorize into the product of T/Ec<1 the main time dependence is due to the factor
averages. One can therefore simply replace thd—1)"" in the definition of X (t) [Eq. (56)]. One can
cog\2¢.(01)] in action (380 by Y (t), and obtain the ef- greatly simplify the calculation by eliminating this time de-
fective action for the spin degrees of freedom in the form Pendence with the following trick. Note that the unitary

transformation with the operator
B (o=
S,= | dt| dxz—
0 2
changes the sign aof ; in Hamiltonian (60). Therefore the

B /4D factor (—1)"Y can be accounted for by adding operators
B fo E)\T(t)coi \/E(Z)S(O’t)]dt' (59) U(7) andU(0) to trace(58),

2
(atqzs) +

UF

CXNE U=(-1)¢°=(c—ch)(c+ch (61)

where we have introduced the notations B
ZS(T)=Tr[Ttex;{—f [Ho+HL(t)]dt U(T)U(O)}.
N\ (t)=Acod x.(t) — 7N]=A(—1)"cog sy (t) — 7N], 0
(56) (62)
Here Hy+H_(t) is obtained from the Hamiltoniat60) by
A= /2?’UFEC|r| (57 replacing\ (t)—\ (t)/(— 1)V, Its time-independent part
w3 ' Hy is given by Eq.(60) at =0, and the correction is
The procedure leading to actiof®5) implied that all the H'(t)= A{cog mN)—cog dx,(t)— 7N} (c+c) W,
relevant time scales of the problem are longer tit . (63)

Therefore, one has to integrate out the fluctuations of the

spin degrees of freedom with frequencies exceeding % +

This procedure is straightforward and amounts to replacing V= fﬁx(ck_ck)dk' (64)
D with the new bandwidth~E.. Thus Eq.(55) gives the
effective action of the problem, provided the bandwidth
~Ec.

One can now find the correlatd{(r) using Eq. (52
where the functional integraZ (r) is defined asZy(r)
= [e~5"D¢s. For the subsequent calculations it will be con- KO(7)=(TU(r)U(0)),, (65)
venient to use the Hamiltonian formulation of the problem s
and expresZ(7) as the trace of the time-ordered exponen-where (- - -), denotes an averaging over the equilibrium
tial thermal distribution with the Hamiltoniakl,. The explicit

analytic result for this quantity is given by formu(&6) of
] (59) Ref. 14. The result is an even function of the gate voltidge
' and therefore within the approximatidt’(t)=0 the ther-
moelectric coefficienG vanishes.

To find the leading contribution t&; at smallT/E; we

expand Eq.(62) to first order of the perturbation theory in

The perturbatior /(t) vanishes al/Ec—0. In this limit
the spin contribution to correlatdb2) becomes the Green'’s
function of operatordJ,

B
ZJ(7) =Tr[ Ttexr{ - fo H(t)dt

where the time dependent Hamiltonig} is given by

H ()= ;—:J:{wzﬂi(X)+[&X¢S(X)]Z}dx H.(t). The correction tdK¢(7) has the form
4D Kgl)(7)=—Jﬁdt<TtH;(t)U(T)U(O)>O. (66)
- \/Exfmcos{ V2¢4(0)]. (59) 0

This correction is evaluated with logarithmic accuracy in Ap-
The small parameter of the problementers through pengix C 2:

N A(t). In order to evaluat& () in all orders in\ . we refer-
mionize Hamiltonian(59) following Ref. 13, and find

8 E % &d et”
KP(7)=— —2|r[2sin2N)In Cf fa¢
ar

N . ) THT ) wg? 112 efer1’
HT(t)—f & (D(e+ch(ce]dk. (60 (67)
Here &.=vek; the operators:ﬁ and ¢, satisfying the anti- 8yEc,
commutation relationgc,,c; }=8(k—k’) create and de- I'= 2 |r|*cos’(mN). (68)
stroy chiral fermions. Finally; is a fermion annihilation op-
erator anticommuting witte,, andcﬂ:. It is important to note that although this result is the first-

Although Hamiltonian(60) is quadratic in the fermion order correction irH (t), it is non-perturbative in the reflec-
operators, the time dependenceNoft) makes the evalua- tion amplituder.
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Substituting the correlatd(7) in the form of Eq.(52),
with K. andKg given by Egs(39) and(67) into the expres-
sion for thermoelectric coefficieri2), we obtain

_|r|2sin(27N)

" f'ﬁ x2(x%+ m?)dx
—=[x2+ (T'/T)?]cosR(x/2)

(69

At temperature§ >T" this expression reproduces the pertur- L L

bative resul{Eq. (50)]. The latter is valid untiT~1I", and at
T<T the thermoelectric coefficierd; becomes

7w GLT® 1 sin(wN) 1

60y2 € E2 |1|2 cos(nN) |r|2cog(mN)’
(70)

The dependence @+ on the small reflection amplitude il-
lustrates the nonperturbative nature of this result. It is als

worth noting that at low temperatures the dependendg-of
on the gate voltag#l is strongly nonsinusoidal.

To find the thermopoweB= G+ /G one can use expres-
sion (69) and the nonperturbative result of Ref. 14 for the

conductancés of the SET:

- GLFJ (x2+ m2)dx
 8YEc) —«[x2+ (T'/T)?|cosR(x/2)

(71)

At relatively high temperature3>1I" the thermopowerS
=G+ /G obtained from Eqs69) and(71) coincides with the
perturbative expressiofEg. (51)]. In the more interesting
case of low temperatureb<1I", we find

o~
- 5

(O
m|_|

ar( aN)In (72

|r|?cog(mN)

PHYSICAL REVIEW B 66, 045301 (2002
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Thermopower S/e

0 02 0.4 00 08 1
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FIG. 2. Thermopower of the SET as a function of the gate
voltage at different temperatures. The curvesSerG;/G are ob-
tained numerically from Eqg69) and (71) at |r|>=0.1 andT/E¢
=0.3, 0.125, 0.025, 0.005, and 0.001. As the temperature is low-
ered, the amplitude of the thermopower oscillations first grows ac-
cording to Eq.(51) and then decreases in agreement with E8).

elow the crossover temperatureEc|r|? the shape of the oscilla-
tions becomes nonsinusoidal.

V. SUMMARY AND DISCUSSION

We presented a theory of the thermopower of single-
electron transistors in the regime when the coupling of the
quantum dot to one of the leads is strong. The theory is
applicable to devices with relatively large dots, where the
effects of finite quantum level spacing can be neglected, and
the main transport mechanism is inelastic cotunneling. Using
the fact that the coupling to one of the two leads is weak, we
obtained expressiof22) for the thermoelectric coefficient
Gt in terms of the correlatd(7) describing the charging of
the dot strongly coupled to the other lead. General expres-
sion (22) is applicable to contacts with arbitrary coupling.
We applied it to the case of coupling via a quantum point
contact with a single transverse mode and almost perfect
transmission|r|<1. In the case of spin-polarized electrons

The new energy scalE arising from the nonperturbative we found sinusoidal Coulomb blockade oscillations of the
solution is always small compared to the charging energythermopower with the amplitude—e_l|r|T/EC [Eq. (39)].

see EQ.(68). It is important to keep in mind thaf is a

Experimentally the polarization of electron spins can be

function of the gate voltage, and vanishes near the Coulomlchieved by applying a strong magnetic field. In the absence

blockade peaksN=+1,+32 +5 .. .. As aresult, even at
T<E(|r|? perturbative result$50) and (51) are still valid

of the magnetic field the thermopower is given by the ratio of
nonperturbative expressiof®9) and(71). At relatively high

near the conductance peaks, whereas in the valleys asym@mperatured>E|r|? the Coulomb blockade oscillations
totics (70) and (72) apply. The crossover between these as-of S are sinusoidal, with the amplitude e *|r|?In(Ec/T)

ymptotics occurs at the values Nfwherel'=T, i.e., accord-
ing to Eq.(68) at a distanc@N~ \T/E[r|? from the centers

[Eq. (51]. At lower temperature§ <E¢|r|? the oscillations
are non-sinusoidal, Fig. 2, and their amplitude is given by

of the conductance peaks. At these points the thermopoweig. (73).

reaches its maximum absolute val8g,,, which can be es-
timated by substitutingl= %+ 6N in either Eq.(51) or (72),

resulting in
T Ec
~e1 R
Smax~ € |r|\/ECInT. (73

In several experimerfts*®the thermopower of a SET has
been measured as a function of the gate voltage. The experi-
ments of Refs. 8 and 9 were performed in the regime of weak
tunneling. The experimental results are in good agreement
with the theories of the thermopower of a SET in the regimes
of sequential tunnelifgand weak inelastic cotunnelirg.
These experiments established the applicability of the ap-

The exact shape of the Coulomb blockade oscillations of th@roach to the thermopower based on the models of electron

thermopower found from Eq$69) and(71) is illustrated in
Fig. 2.

transport similar to the ones used in this paper. In particular,
there is no experimental indication that other transport
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In the frequency representation the Matsubara Green’s
7 function can be written as
m

B
G(en)=J0 drexplie,7)G(7), (A2)

wheree,,= wT(2n+ 1) are the fermionic Matsubara frequen-
p cies. Depending on the sign ef, the 7 integration contour
" can be distorted to the upper or lower half plane as shown in
Ret Fig. 3.
Keeping in mind that the retarded Green’s function
GR(ie,)=G(e,) at €,>0, and using the fact that for the
fermionic Matsubara frequencies expB)=—1, we can
then express the retarded Green function as

U GR(ien)=ifwdtexp(—ent)[G(it+O)+G(,8—0+it)].
0

(A3)

FIG. 3. Representation of the deformation of théntegration
contour in Eq.(A2). For positivee,, the contour should be distorted
into the upper half-plane, and for negatigg into the lower half- The analytic continuation to real frequencies can now be
plane. performed in the last line of EQA3) through the substitu-

tion e,— —ie.
mechanisms, such as phonon drag, contribute significantly to We then obtain a similar expression for the advanced
the observed thermopower. Green’s functionG*(€) using the relatiorG”(i e,) =G(e,)

We are aware of only one experiment on the thermopoweat €,<<0. Combining the two results, we find the following
of SET in the strong coupling regim@ef. 10. In this ex-  expression for density of statésl):
periment the Coulomb blockade oscillations of the ther-
mopowerS(N) were measured at different values of the re- 1 (=
flection coefficient. Only one published curv&(N), v(e)=— _f dtexp(iet)G(it+0)
measured alr |?=0.2+0.1, approached the strong tunneling 2m)
limit |r|<1. In this case the thermopower remained sinu- 1
soidal even at the lowest available temperatures. To observe - _f
the more interesting non-sinusoidal behaviorS§iN) one 2m
would have to measure the thermopower at lower tempera-
ture to reach the reginiB<E¢|r|2. This may require making Since the Green’s functio(7) is analytic everywhere ex-

" dtexgiet)G(B—0+it).  (Ad)

a sample with a larger quantum dot to ensure that the lowestept on the lines Re=0,+3,+28, ..., we canshift the
temp_erature is still large compared to the quantum leveintegration contour in the first line of EqA4) by t—t
spacing. —iB/2 and in the second one lty-t+i8/2. As a result we

obtain Eq.(14).
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In this appendix we derive result28) and (31) for the
correlatorK(7) in the spinless case.

APPENDIX A: TUNNELING DENSITY OF STATES 1. Evaluation of Ko(7) [Eq. (28)]

To derive EQ.(28) we evaluate Gaussian integrél6)
under the assumptio’=0. First, we find ¢,(x,t) that
minimizes the actiorSy,+ Sc( 7). Differentiating Eqs.(273
and (27b) with respect tog(x,t), we find

In this appendix we present the derivation of Et{) for
the tunneling density of stateg €). We start with the stan-
dard expression for the density of states

v(e)= 5-[GR(e)~GA(e)] (A1)

T+ vEdeh,—2vEEc 5(x)=0.

1
n(H)+=¢.~N

where GR and G* are the retarded and advanced Green’s
functions, which can be obtained by the analytic continuation
of the Matsubara Green’s functidB(e,). The solution of this equation has the form
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p( IwnX|>
Ecexp — >
) =TN-TX ————="—n(

@n

. wn)efiwnt,
|"’n|+ .

(B1)

where w,=27nT are bosonic Matsubara frequencies, and

n,(w,) is the Fourier transform af (t) [Eq. (24)]:

eiwnr_ 1

iwp,

N(wy)= (B2)

In the calculation of the correlatdy(7) the integrals
over the fluctuations of the fiele(x,t) about the saddle

PHYSICAL REVIEW B 66, 045301 (2002

Using Egs.(B1) and(B2) we now find

(8'),~(8")o=~ 25|r|Ec Ree? ™
T

X Jﬁdt (elFO-Ft=nl_1)  (BY)
0

where

~. sin(27Ttn)
.

4 ¢

27°T

F(t)=2 (B8)

=1

points¢.(X,t) and¢o(X,t) in the numerator and the denomi- At T<E.. the series can be evaluated explicitly for arbitrary

nator of Eq.(25) cancel each other. Thu§y(7) is given by

ty

the ratio of the saddle-point values of the respective inte-

grals. Substituting Eq(B1) into Egs.(278 and (27b), we
find the saddle point action in the form

1-cog27T7n)
Ec
2T

In the denominator of Eq25) we have the saddle point
action at7=0; according to Eq(B3) it vanishes. In the
numerator of EQ.(25 the time 7 is finite. Assumingr
>E.! andT<Ec, we find

Ec
[So+ Sc( T)]dz:qu(x,t) = 27 ngl
n

n+

(B3)

So+S P

- - =2 In———.
[SotSc(T)p=0 (x1) YEJSin(#T7)]
The correlatoKy(7) is now found by exponentiation of Eq.
(B4). The result is given by Eq28).

(B4)

2. Evaluation of K(7) to first order in r [Eq. (31)]
To derive the first-order correctidrEq. (31)] to the cor-

relator Ko(7) one has to evaluate the Gaussian functional
integral[Eq. (30)]. It is convenient to integrate with respect

to fluctuations o= ¢— ¢, of the field ¢(x,t) about the
saddle pointp (x,t). Then integral30) takes the form

B ) D )
<8’>T:Ref dt %400 —;|r|<e2""(°")> ,  (B5)
0

where the averaging - - ) is performed over the fluctuations
around the saddle poirt,. This averaging can be viewed as

integral (30) with n. andN in the charging actiob: set to

2

cot( 7 Tt), t>Ec?,
Ec
F(t)= : (B9)
©  sin(Ecty/ ) .
ZJO dyTy, t<T -

In order to find thermoelectric coefficief®2) we need to
find K(7) at 7~T 1> Egl . At these time scales the details
of the short-time behavior o0& are irrelevant, and one
can replace

2

eF 1~ E—gé(t)ﬁ sinF(t), (B10)
C
where the constarf~1.59 is defined as
2 (= % sin(Xy)
g—;fo dx 1_COS(2L dy 1ry (B11)

Substituting approximatiorfB10) into the integral in Eq.
(B7) and using Eq(B9), we find

(8):=(S8")o=27¢lr|

T

cog2mN)

sin(27N)cot(#T7)|. (B12)

Ec

The calculation of the conductan@and the thermoelectric
coefficientGt requires the knowledge of the even and odd in
7 components oK(7), respectively. In Eq(B12) we re-
tained only the leading-order termsTAE for each of these
components. Substituting EB12) into Eq. (29), we arrive

at Eq.(31).

zero. The evaluation of this integral is straightforward, but
lengthy. It can be avoided by noticing that the expression in
the square brackets in EB5) is time independent and has

the meaning of the first-order correction to the ground state

energy of the Hamiltonia2339—(23¢) at n=N=0. Substi-
tuting its value found in Ref. 13, we obtain

APPENDIX C: K(7) FOR ELECTRONS WITH SPIN
1. Evaluation of x.(t,t"; 7) and x4(t,t") [Eq. (42)]

The correlator.(t,t"; 7) defined by Eq(429 can be pre-
sented in the form

, 4 B o o 1
<$>T=—;|r|EcRefOdtez'd’f‘o")- (B6) k(LU 7)= SRe[k{ (L 7) 4 (L], (CD)
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where

K(;:(t,t,;T)=<ei €§[¢c(0,t)‘—'¢c(01’)]>7_ (C2)

The calculation of the correlators. amounts to an evalua-
tion of Gaussian integrals. Similarly to the calculations of
Appendix B 2, it is convenient to integrate over the fluctua- —

tions ¢. about the saddle point

V2Ec

|wn|+_

nr(wn)eiiwnta

N
be(00)= E_TE

@n

(€3
where n(w,) is given by Eq.(B2). The saddle poinfEq.
(C3)] is easily obtained from Eq(Bl) by replacing Ec
—2E¢, n(t)—n,(t)/y2, and N—N/\2. Substituting
éc(01)= ¢ (0) + ¢(t) into Eq.(C2), we find

ke (Lt ) =expli V2 b, (01) = e (01")]}
X exp{_2<§0c(t)[q”c(t)i(Pc(t’)]>}'
(CH

To evaluate the last factor in EGC4) we introduce the gen-
erating functional

W[{J(wn>}]=<ex;{—T§ I wn) @ — @)

> . (CYH

This Gaussian integral is completely determined by th

saddle point valu@ﬂ(t) of the field ¢ :

1
W[{J(wn)}] = ex;{ - ETE ‘](wn) ‘Pg( - wn)

Next we note that fluctuations af.(t) coincide with those
of ¢-(0t) atN=n_=0. Thenn_(t) in Eg. (38b plays the
role of a source term similar t&(t). More precisely, they are
related according toJ(t)=(2\2Ec/7)n(t). Then the
saddle pointpi(t) can be determined frofC3) atN=0 and
n,(wn) = (7/2y2Ec)I(w,), and we obtain

ZTZ J(wn)I(—wp)

WI{I(wn)}]=expf 7 T2

(Co)
|wn|+ I

Differentiating the functionaW with respect toJ(w,) and
J(— wy), from Egs.(C5) and(C6), we find

<‘Pc( - wn)‘Pc(“’m)) = 5F

In the time representation this result takes the form

H !
ela)n(tft )
eflwnllD_

(eeect) =3 T

el +

(C8)
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The asymptotic behavior of this correlator is

<‘Pc(t)§0c(t/)>

1 D 1
=In , =t =—
2" 2yEc1+[D(t—t")]? Ec
4T2 (Cg)
a
o , =t —.
8EZsiP#T(t—t') Ec

Substituting Eqs(C3), (C4), and(C9), into Eq.(C1) we find
the correlatork(t,t';7) at|t—t’|>Ec" in the form of Eq.
(43), where

» . _ .
e i27T(t T)n_e i27Ttn

ECE

27T n=—=

XAt)=

c
nl+—=
I 2T

in

This definition of y (t) can be rewritten in the form of Eq.
(45).

Our derivation ofx(t,t"; 7) allows one to find«g(t,t") as
well. Indeed, atEc.—0 the actions of the charge and spin
modes are identical. Taking the linfti.— 0 in Egs.(C3) and
(C8), from Egs.(C4) and(C1) we find the correlatok(t,t")
at|t—t’|>D ! in the form of Eq.(44).

2. Evaluation of the correlator Kgl)(r) [Eq. (67)]

In this Appendix we outline the derivation of the cor-
Gelator (67) starting from Eq.(66). At small temperaturd
<E( one can expand expressi@8) for H'(t) to first order
in 8y, and present E(66) in the form

B
K®(r)=A sin(qTN)fo Sx,(H®(r,t)dt, (C10

O(7,t)=(T(c+chH T ()U(7)U(0)),. (C11)

Here we introduced the shorthand notatiant+c"),=c(t)
+c'(t). To evaluate®(7,t) we substitute expressiof61)
for U. Since the operatorct-c') commutes with the Hamil-
tonian Ho, the Green’s function(T(c—c"),(c—c")o)o
=—1, and we find

O (7,t)=(T(c+chHW(t)(c+ch) (c+ch)o)o.
(€12

Considering that the Hamiltoniad, is quadratic in fermion
operators, one can use Wick's theorem and pre®ntt) in
terms of single-particle Green’s functions:

O (7,1)=G1(7)G2(0) + Gy(t—7)Gy(—1) = G1(1) Go(7—1).

(C13

HereG,(t) andG,(t) are defined as
Gy(t)=(Ti(c+cNi(c+cho)o, (C149
G,(t)=(T(c+ch W (0)),. (Cl14bh
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Evaluation of Green’s function€C14) can be facilitated

by noticing that upon the substitutioh cos@N)=\ the
HamiltonianH coincides with the Hamiltonian

H=fw [&cle—N(c+ch)(ce—cl)ldk  (C15

in Eq. (44) of Ref. 13. This Hamiltonian was diagonalized to

the form>

H= E+f &(Clc+ClCdk, (C16
0

whereE is the ground state energy of the Hamiltonkdrand
the fermion operator€, andC, are given by
c &  Ccly V2N
k= -
VEHT? 2 Jg+r?

(c+ch

N
F fw dfk’ Ck/_C,k/
+ ,  (C17
TE+T2) wgy— &0 V2
C=(ct+chpry2. (C18)

Here I'=4m\?/vg, which in our notations becomes Eq.
(69).

To find Green’s function$C14) we invert transformation
(C17) and obtain

c—c' T e dés 0(&)Cw+O(—E0C,,

s VE +T72

LR T 3%
€k .
2[0(§k)ck+0(_§k)cfk]v (C19

VEHT

+

» dk
ctcl= —23’2)\f

0 VEAT?

(CetC)). (C20
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Using these results, the definition df, Eq. (64), and the
form [Eq. (C16)] of the Hamiltonian, we easily obtain the
Green'’s functions

o dg e§|t|
Gy(t)=—s ntf —_— c21
1(t)=—sg P T (C21
4N (= &dg o eflt
Ga(t)=—— de (C22

VF) wg?4+T2 efé+1

The Green'’s function&(t) andG,(t) are odd and even
functions oft, respectively. Also noting thaty ,(t) given by
Eq. (45b) is invariant with respect to the change of variables
t— r—t, we conclude that the contributions of the second
and third terms in Eq(C13) to integral (C10 are equal to
each other. Finally, the first term in E¢C13) does not con-
tribute to Eq.(C10 because it is independent gfand the
time integral of Sy ,(t) vanishes. Therefore we rewrite Eq.
(C10 as

B
K®B(r)=—-2A sin(wN)f Sx(1)G1()Gy(7—t)dt.
0
(C23

Without loss of generality we can assufie- T<E.. Since
Sx(t)=— (m?TI2Ec) cof{ #Tt] neart=0,8 [see Eq.(48)],
integral (C23 diverges logarithmically at—0 andt— .
These divergences are cut off at the short time sgafeand
the long time scale miir 1, T~ Due to the fact thaG,
(+0)Gy(7)=—G1(B—0)G,(7— B), the two divergences
add up. Therefore with logarithmic accuracy correld@23
is given by

Ec

(1) 27N
K(7m)= E—CSlr'l(ﬂ'N)Gl(-I—O)G2(7')In_|_+F .

(C24

SubstitutingG;(+0)=1 and expressiofiC22) for G,, we
arrive at Eq.(67).
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